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Fig. 1. Long tail distribution of stamps in the MiikeMineStamps dataset and stamp
samples from selected classes. The labeling was performed in cycles across documents
from different time periods.

Abstract. Mining existing image datasets with rich information can
help advance knowledge across domains in the humanities and social
sciences. In the past, the extraction of this information was often pro-
hibitively expensive and labor-intensive. AI can provide an alternative,
making it possible to speed up the labeling and mining of large and spe-
cialized datasets via a human-in-the-loop method of active learning (AL).
Although AL methods are helpful for certain scenarios, they present lim-
itations when the set of classes is not known before labeling (i.e. an
open-ended set) and the distribution of objects across classes is highly
unbalanced (i.e. a long-tailed distribution). To address these limitations
in object detection scenarios we propose a multi-step approach consisting
of 1) object detection of a generic “object” class, and 2) image classi-
fication with an open class set and a long tail distribution. We apply
our approach to recognizing stamps in a large compendium of histori-
cal documents from the Japanese company Mitsui Mi’ike Mine, one of
the largest business archives in modern Japan that spans half a century,
includes tens of thousands of documents, and has been widely used by
labor historians, business historians, and others. To test our approach
we produce and make publicly available the novel and expert-curated
MiikeMineStamps dataset. This unique dataset consists of 5056 images
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of 405 different Japanese stamps, which to the best of our knowledge is
the first published dataset of historical Japanese stamps. We hope that
the MiikeMineStamps dataset will become a useful tool to further explore
the application of AI methods to the study of historical documents in
Japan and throughout the world of Chinese characters, as well as serve
as a benchmark for image classification algorithms with an open-ended
and highly unbalanced class set.

Keywords: Active learning · Object detection · Long tail · Open set ·
Stamp · Japanese · Historical · Dataset

1 Introduction

Fig. 2. The most frequent stamps by class as collected across active learning cycles.

Mining existing image datasets with rich information can help advance knowledge
across various domains in the humanities, social sciences, and beyond. In East
Asia, stamps often take the place of signatures. When opening a bank account or
completing a contract, instead of signing one’s name, it is common to stamp it onto
the account application or contract. Stamps are therefore the primary instrument
for verifying one’s identity, but they have also been used for a number of other
purposes. It is not uncommon for businesses and government offices to stamp the
date onto a document, along with the name of the company or branch office, or the
status of the document, such as “approved” or “top secret”. Documents emanat-
ing from East Asian government bureaucracies or businesses often feature multi-
ple stamps on a single page. Mining these stamps opens unprecedented scenarios,
making it possible to transform a document archive into a rich dataset that can
reveal individual names, information flows, and interpersonal networks.
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The Mitsui Mi’ike Mine archive is probably the most complete business archive
for the study of modern Japan available today. Its uniqueness lies in its size, more
than 30,000 pages, and its span, half a century ranging from 1889 to 1940. Without
the aid of machine learning, mining the tens of thousands of stamps in this archive
would require an expensive team of research assistants trained in reading the fre-
quently stylized and hard-to-read Chinese characters that are used in East Asian
stamps. The research assistants would need to open a photograph of each docu-
ment, input a document identifier in a spreadsheet, and then work on recognizing
the stamps that appear on that document. Since every document has, on average,
several stamps, this would have to be repeated tens of thousands of times, requiring
thousands of hours of work. However, the cost of such work would be secondary to
the real challenge of finding, hiring, and training such a team of expert assistants.

During the past decade, machine learning has been widely used and applied
to discovering and automating such tasks. The most promising type of algorithms
falls under the supervised learning category [31]. These algorithms depend on the
availability of large volumes of labeled data, making it possible to learn “by exam-
ple”. Producing the much-needed labeled data traditionally requires an expen-
sive and heavily involved process which can be prohibitive. The labeling challenge
is particularly significant in domains that involve specialized knowledge. Active
learning (AL), which is concerned with optimally selecting the next data samples
to label based on feedback from prior iterations, has become a useful approach to
making labeling possible while making a reasonable investment in time and effort.
Until now, most AL research has been applied to classification rather than object
detection. For AL in detection, however, the main area of focus is defining ideal
criteria that make it possible to select ideal next candidates for labeling.

A significant limitation of the existing AL approaches for detection is that
they do not consider open-class (i.e. undefined number of classes), long-tail data
distributions (i.e. a large number of classes and few samples for a significant
portion of them). Datasets exhibiting these characteristics are common and par-
ticularly challenging.

To facilitate the labeling work in scenarios like the one described here, we
propose a method that leverages active learning concepts and popular algorithms
in the area tuned to the application. The method relies on the following elements:

1. Break the task into two parts: detect generic “objects” and classify them.
2. Use a classification model to manage open-class, long-tail distributions.

We illustrate this method by applying it to the Mitsui Mi’ike Mine catalogue
of historical documents, whose characteristics make it ideal for this type of work:

– Stamps share similar visual features. Previously unseen classes of stamps can
still be identified by a generic stamp detector.

– The stamp class set is not known in advance.
– The long-tail distribution limits the accuracy of off-the-shelf object detectors.

In this work, we use AL to crop out and annotate stamps from the historical
documents and produce the resulting MiikeMineStamps dataset. This unique
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dataset contains 5056 images of 405 different Japanese stamps enriched with rel-
evant domain-specific metadata. Figure 1 presents examples of the stamp images
and the distribution of the stamp classes.

The contribution of this paper is therefore twofold. First, we introduce
MiikeMineStamps, a unique dataset of stamps from Japanese historical docu-
ments, and second, we also present the application of a known AL approach
for the object detection of datasets with open class and long-tail distributions.
We trust that this dataset will become a useful tool to further study Japanese
historical documents, as well as serve as a benchmark for image classification
algorithms with highly unbalanced class sets.

2 Related Work

2.1 Kuzushiji and Stamps in Japanese Historic Documents

Fig. 3. Handwritten and stamped Chinese characters. The last name Makita looks very
different when handwritten in cursive (left) and imprinted as a stamp (right).

Much of the leading-edge research in the recognition of the Chinese characters,
which are used in Japan, China, Korea, and a few other parts of East Asia, has
focused on the recognition of handwritten cursive script. Today, most Japanese is
printed or handwritten in easy-to-read block or semi-cursive characters. Until the
beginning of the twentieth century, however, most documents were either printed
with woodblocks or handwritten with a brush using a cursive script known as
kuzushiji. Not only does the kuzushiji cursive script link multiple characters, mak-
ing it difficult to know where a character begins and where it ends, but there was no
standard way for writing each character. Learning how to read a character meant
learning three, four, or more ways in which it could be written. Since reading the
kuzushiji cursive script requires special training, only trained archivists and his-
torians are able to read it. Recently, however, the Center for Open Data in the
Humanities (CODH) in Tokyo published a revolutionary machine-learning model
known as Kuronet [4], which made it possible to read cursive kuzushiji script with
an F-score in the range of 80% to 90% for most woodblock-printed books and with
lower and sufficient accuracy for handwritten documents. This model has elicited
enormous interest from archivists and historians in Japan and internationally.
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Fig. 4. The result of using Kuronet Kuzushiji Recognition Service on a document with
stamps. Kuronet [4] successfully recognizes semi-cursive, but stamps are not detected
at all and when they are, they are incorrectly recognized.

Machine learning models for reading kuzushiji cursive characters such as
Kuronet, however, are not capable of recognizing the innumerable stamps that
populate Japanese bureaucratic documents, as well as documents from China,
Korea, and other parts of East Asia, from several thousand years ago to today.
The scripts used to make stamps are stylized in ways that are very different
from the kuzushiji cursive writing and use multiple, often archaic, fonts (Fig. 3).
They can also combine multiple characters on a single stamp or can be used to
simultaneously stamp two conforming copies of a document, such as a letter or a
contract, so that the top half of the stamp appears on one document and the bot-
tom half of the stamp on another. Figure 4 shows how Kuronet, a model created
to recognize cursive handwritten or woodblock printed documents, is incapable
of recognizing stamps. Although Kuronet successfully recognized portions of the
semi-cursive writing, it did not recognize any of the stamps or even detect most
of them. This is not surprising if we consider that Kuronet was never trained to
recognize stamps.

As a result, a different model and a different dataset are needed for recog-
nizing stamps in historical documents. The labeled dataset of stamps MiikeM-
ineStamps together with the AI model to distinguish them fills this gap.

2.2 Active Learning

With the wide adoption of data-hungry deep learning methods, the need for large
labeled datasets encouraged the development of Active Learning (AL) methods.
AL aims to efficiently label large datasets in order to reduce the annotation cost.
In AL, a small subset of data is annotated first, then an acquisition function
selects the next batch to be annotated. A machine learning model trained on
previously collected data helps the annotator by producing machine-generated
labels, which the annotator verifies or corrects. The process repeats until the
whole dataset has been labeled.
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Until recently, AL research in computer vision focused primarily on image
classification [2,8,14,25,26,33,37]. Only a few recent works explore AL in context
of object detection [1,12,21,22]. All these works focus on the optimal selection
of the acquisition function.

A few works consider the class imbalance when applying AL. In [21], the
authors address the class imbalance for the task of object detection in aerial
images. The long tail distribution of classes is also explored in [9] in the image
classification scenario. Most other AL approaches consider datasets with a small
number of well-balanced classes, such as DOTA [35] with 15 classes, CityPer-
sons [38] with 30 classes, PASCAL2007 [6] with 7 classes, BDD100K [36] with
10 classes, or CIFAR100 [15] with 100 classes.

In our dataset, the number of classes is not predefined during the cycles of
AL (i.e. the open class set problem) reaching 405 by the final iteration. On every
cycle, most classes contain only a handful of instances, making the dataset highly
unbalanced (Fig. 2) and meaning that the object detectors used in existing AL
work simply can not be bootstrapped.

2.3 Image Classification with Unbalanced Data

Over the past few years, convolutional neural networks (CNNs) have excelled
on image classification tasks. These classic CNN architectures, however, only
perform well on well-balanced academic datasets, such as ImageNet [5], CIFAR-
100 [15], COCO [17], Caltech-256 [10], CelebA [18], VisualGenome [13], and
others. Most of these datasets rarely capture the state of the real world in which
highly skewed, unbalanced data prevails.

As a result, multiple few-shot learning algorithms [34] were introduced.
Matching Networks [32], Prototypical Networks [27], and Model-Agnostic Meta-
Learning [7] are some cutting-edge research papers that aim at solving the image
classification problem with very few images or instances per class. In 2019,
“Large-Scale Long-Tailed Recognition in an Open World” (OLTR) [19] was pre-
sented. It addressed the long-tail and open-set nature of real-world datasets. We
compare three of the aforementioned models for the task of classifying stamps
in our MiikeMineStamps dataset.

3 Methodology

Fig. 5. The proposed AL pipeline. Arrows indicate the flow of information.



MiikeMineStamps 9

The proposed method (Fig. 5) follows the general principle of active learning. On
every cycle, a machine learning model first predicts bounding boxes and object
class for all unlabeled images in the dataset. Then we pick a subset of images
based on an adjustable criterion. In our experiments, we favor images with a large
number of objects that have high uncertainty. The images and the predictions are
passed over to human experts to verify the labels and correct them if necessary.
The ML model is then retrained on all the verified data available, and the cycle
is considered complete.

In the case of the open class set, we do not know object classes beforehand
and cannot train an object detector model that looks for a specific set of classes.
Instead, we propose a two-step approach. First, an object detector model finds
instances of the generic “stamp” class, then an image classification model is used
to recognize a specific class in cropped out images of “stamps”. This approach
provides the advantage of transferring the difficulty of dealing with open class
sets and long-tail distribution from the detection to the classification setup,
where there are more tools to manage it.

We apply the detection algorithm on the images to extract stamps and resize
these stamps to 80×80 pixels. Then, the cropped stamps are individually passed
to the image classifier. While any off-the-shelf object detector architecture can be
taken for the “stamp” detection step, the image classification model must be able
to handle the open class set and the long tail challenges. We assume the number
of instances per class varies from one to several hundred. Furthermore, we assume
the existence of previously unseen classes. We compared three image classifica-
tion models: FaceNet [24], Prototypical Networks [27], and OLTR [19]. While
FaceNet and Prototypical Networks produce reasonable results, these models do
not address the long-tail class distribution, and their performance falls behind
OLTR. We direct the reader to the respective work for the details of the archi-
tecture.

4 Experimental Results

4.1 Mitsui Mi’ike Mine Documents

We use the presented two-step active learning approach on a compendium of
historical documents from the Mitsui Mi’ike Mine company. In this company, like
in many other Japanese companies from this era, when a letter or other document
crossed someone’s desk, it usually incurred a stamp, either to inscribe the name of
the manager who approved it or to label it in some other way. Recognizing stamps
across this archive will make it possible to trace the circulation of documents
within this company. Considering that the full archive consists of more than
thirty-two thousand pages and each document usually features multiple stamps,
the automatic detection and classification of stamps is of considerable advantage.
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Figure 6 (left) shows examples of the ground truth annotations in a page of
a document. Documents were photographed as colored images with resolution
6000 × 4000 pixels. We collected annotations for the total of 677 images that
have 5056 stamps. In Sect. 6, we present a dataset that consists of images of
stamps, cropped from the original archive, annotated with stamp names and
other metadata. The original image archive is not published in order to preserve
the privacy of employees.

The active learning workflow follows a pipeline proposed in Sect. 3. Below,
we describe the detection and classification components in detail.

Fig. 6. (a): an example image with ground truth labels; (b): predictions of detector +
classifier.

4.2 Detection

Given that the method is agnostic to the specific choice of a detector, we used
a well-known RetinaNet [16] detector with ResNet-50 backbone, pretrained on
COCO.

Hyperparameters were chosen via 5-fold cross-validation separately for every
cycle. For the last cycle, the learning rate was set to lr = 0.0001 and batch size
to batch = 4.
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Table 1. Object detection average precision (@IoU = 0.5) across active learning cycles
(%). Numbers on the main diagonal are the average “test” result in 5-fold cross-
validation. Models trained on data from the 1st, 2nd, 3rd, and 4th cycle produce exceed-
ingly better results when evaluated on the 4th cycle (in bold).

Trained on Tested on

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Cycle 1 89.3 31.6 44.7

Cycles 1–2 86.8 63.2 55.3

Cycles 1–3 83.5 75.0

Cycles 1–4 84.3

Table 1 tracks the performance of the object detector across AL cycles. The
numbers on the main diagonal, i.e. trained and tested on the same cycle, are
obtained from training with cross-validation. The three models trained on the
first three cycles (in bold) perform increasingly better when trained on more
data, showing that the active learning is gathering useful training data.

Figure 7 presents the precision-recall curves of detectors trained on cycles 1,
1–2 and 1–3, and evaluated on the last cycle 4. The detector performance can
be seen to be steadily improving.

Fig. 7. Object detector trained on different cycles and evaluated on cycle 4.

4.3 Classification

Once stamps are detected via an object detector, the next task is to classify
them. Figure 1 shows the high imbalance across classes. In fact, many classes
have only a handful of examples. To overcome that, we picked classification
models that are capable of working with long-tailed and open-set datasets. We



12 P. A. Buitrago et al.

evaluate (1) FaceNet [24], (2) Prototypical Networks [27], and (3) OLTR [19]
image classification models. We now describe the experiments with each of them.

FaceNet is a popular architecture designed to work with a high number of
classes but few instances per class. We split all data from cycle 1 with classes hav-
ing more than 2 instances into the train, validation, and test sets. The remaining
classes with 2 or fewer instances were combined into a class called “other”, which
was added to the test set. This gave us a total of 29 classes with 507 images in
the train-val set and 30 classes and 135 images in the test set. We used Inception
ResNet v1 as the backbone model for the FaceNet model with the softmax loss.
We trained the model for 200 epochs on images of stamps resized 160× 160 and
generated embeddings in the 512-dimensional space. SVM was chosen as the last
layer of FaceNet owing to its popularity [24,28]. It proved to be a better choice
over the Random Forest classifier as per our experiments. After applying the
SVM classifier in this embedding space, we achieved the test accuracy of 63%
with RBF (radial basis function) kernel. The triplet loss failed to work because
of the bias in the selection of the triplets. Randomly selected triplets do not lead
to model convergence, and using the hardest triplets results in the model getting
stuck in local minima. Additionally, adjusting class weights proved to have no
effect on such a long-tailed dataset.

Fig. 8. Prototypical network: t-SNE on the test set (29 classes)

Owing to these limitations of the FaceNet model, we explored a few-shot
learning architecture, specifically Prototypical Networks that is additionally tol-
erant to the long-tail data distribution. We trained this model with 5-shot, 5-
query examples per class, and achieved the test accuracy of 69% for cycle 1
and 76% on the combined cycles 1 and 2 respectively. The t-SNE plot for the
cycle 1 test set is shown in Fig. 8. Through this figure, we aim to illustrate that
some classes form well-defined clusters in the t-SNE space, while other classes
are highly diffuse. It graphically represents the class imbalance in the dataset.
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The motivation behind exploring OLTR model was because of its ability to
handle the open-set property of the dataset. This model promised successful
results based on similarly distributed datasets, and henceforth will be used for
future cycles of our dataset. All classes from cycle 1–3 with less than 3 image
instances were moved to the open set (novel set). We used ResNet-10 [11] as
our backbone and trained it with feature dimension 512 on 200 classes (many-
shot, median-shot, low-shot combined). One important aspect of our work is
reducing the labeling effort for subsequent cycles. To this end, subsequent cycles
are automatically annotated with top-3 class predictions, given these predictions
are above a certain confidence threshold. The expert can either choose from
them or input their own class. Accordingly, we report top-3 and top-5 accuracy
of 71.15% and 78.30% on the test set respectively. As expected, classes from
the “many-shot” set perform better than classes from the “median-shot” set
by 15%, which in turn perform better than classes from the “low-shot” set by
another 15%. For the open-set (novel classes), we achieved 64% accuracy with
the confidence threshold of 0.4. In order to assert robustness, we did 5-fold cross-
validation for all models. A few examples of correct predictions by the OLTR
model are presented in the top row of Fig. 10. The first stamp in the bottom
row was incorrectly predicted to belong to either “kodama” or “sakka” classes,
instead of the correct “kurihara” class. The last four stamps in the second row of
the same figure illustrate the visual similarity between these three classes, which
led to the incorrect prediction.

Fig. 9. OLTR model. Classification results for 200 random classes from cycle 3. (a)
confusion matrix (b) precision-recall curve.

To sum up, OLTR performs best on our dataset as compared to FaceNet or
Prototypical Networks, but the challenge of achieving high classification confi-
dence (> 50%) still exists. Figure 9(a) shows the confusion matrix for the test
set of 200 classes and Fig. 9(b) shows the precision-recall curve showing that the
threshold lies close to 0.4.
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The OLTR model trained on all the available stamps is released together
with the MiikeMineStamps dataset.

5 Technical Details

Each cycle of AL includes the manual labeling process that requires a domain
expert to inspect and annotate labels for hundreds of images. A labeling tool
was required for streamlining the annotation process and making it as fast and
accurate as possible. Our research identified critical requirements for a labeling
tool: web-based, open-source, and/or free of charge for the relevant volume of
data, the ability to specify labels dynamically in the interface as opposed to
choosing from a given set, the compatibility of the label files format, the ability
to export, the support for uploading new or modified labels, and the usability
of the interface.

As a result of comparing 17 different tools, the well-known LabelMe Anno-
tation Tool [23] was chosen for this project. The comparison is released together
with the code. The authors hope that it will be useful for future AL researchers.

Furthermore, active learning with thousands of objects presents the challenge
of tracking changes in the datasets. As one example, the manual cleaning step
after each labeling cycle included (1) expanding the bounding box around each
stamp, (2) tiling stamps of the same class into one “collage” image, (3) exporting

“yamakawa” “yamanojin- “uno” “shomushukan” “matsushima”
daigou”

“kurihara” “kodama” “kodama” “sakka” “sakka”

Fig. 10. 1st row: Examples of correct classification. 2nd row: The first stamp “kurihara”
was incorrectly classified as “kodama” or “sakka”. The last four stamps belong to
the “kodama” and “sakka” classes. The visual similarity between these three classes
explains the model’s incorrect prediction of the first stamp.
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to LabelMe format, (4) importing the cleaned results from LabelMe, (5) back-
projecting stamps from collages back into their original images, and (6) shrinking
bounding boxes back to their original size. This pipeline as well as other work on
managing datasets, including filtering, splitting and merging, visualization and
querying, was performed using the Shuffler toolbox [29].

The project code is available at https://github.com/pscedu/ml4docs.

6 MiikeMineStamps Dataset

In this section, we describe the published MiikeMineStamps dataset.
Once the annotation process via AL was completed, the annotated stamps

were cropped out of the original documents, resulting in 5056 images from 405
stamp classes. The average dimensions of a stamp are 167×257 pixels, but both
width and height vary significantly from 27 pixels to 1200 pixels (Fig. 11b).

The distribution of the number of stamps by class is very unbalanced. The
most common class, “takesue”, has 201 images, at the same time, 158 classes are
represented by a single instance. Two stamps with the same letters but different
shapes belong to the same class. The published dataset contains 14 such classes.

Additionally, the date on each original document was transferred to the
stamps, which allowed us to track the flow of individual stamps over decades.
Figure 12 illustrates this distribution for a small subset of stamps, while the full
information is available in the published dataset.

(a) (b)

Fig. 11. (a) histogram of the number of stamp images per class; (b) distribution of
stamps sizes.

The dataset introduced in this paper is publicly available under a Creative
Commons Attribution 4.0 International license. The data is available for free to
researchers for non-commercial use. This dataset includes the stamp images and
labels. Additionally, we attach the information about the position of each stamp

https://github.com/pscedu/ml4docs
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relative to its page, and other useful details, such as the year of the source doc-
ument. The dataset DOI is https://doi.org/10.1184/R1/14604768. More infor-
mation on the dataset and how to retrieve it can be found at https://kukuruza.
github.io/MiikeMineStamps/. The original images of the historic documents are
not publicly available as they may contain sensitive and personally identifiable
information.

Fig. 12. Distribution of the most frequent classes across decades.

7 Discussion and Conclusion

The dataset of cropped stamps is interesting as it provides a completely differ-
ent perspective on an archive. It instantly shows, for example, which stamps are
most commonly used, providing clues as to who might be the gatekeepers of the
organization. The benefits of this dataset increases considerably when stamps
are classified into a series of classes and matched to the individual document(s)
on which they appear. This will make it possible to identify all of the documents
that came across the desk of an individual. Even more interesting is that stamps
can show the way in which documents circulate in a company or government
office. A memorandum will often circulate across the desk of multiple individ-
uals, departments, or branches. At each location, it will usually incur a stamp
that attests that someone has seen and approved it. Mining stamps on a large
scale opens the door to tracing the circulation not only of one such document
but of thousands of them. It helps to answer numerous questions in archives that
feature a large number of stamps, not only in this archive of the Mitsui Mi’ike
Mine but in most institutional archives in East Asia. For example, how does the
circulation of documents change when a family-owned company becomes a joint-
stock company? How does the circulation of documents in a ministry of foreign
affairs change during wartime? Do the gatekeepers change? How is censorship
implemented? What is the decision-making process in times of crisis? And more
broadly, how do different bureaucratic decision-making processes lead to dif-
ferent outcomes? The answers to these questions are of interest to historians,
political scientists, sociologists, anthropologists, media scholars, and researchers
interested in the study of business management, among other fields.

https://doi.org/10.1184/R1/14604768
https://kukuruza.github.io/MiikeMineStamps/
https://kukuruza.github.io/MiikeMineStamps/
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The recent Large-Scale Long-Tailed Recognition in an Open World paper [19]
presents long-tailed versions of three well-known datasets: ImageNet-LT, Places-
LT, and MS1M-LT. In this work, we collected a naturally long-tailed dataset in
the domain of documents, that we called MiikeMineStamps, which can serve as
a benchmark for OLTR problems.
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ing for deep detection neural networks. In: ICCV, pp. 3671–3679 (2019)

2. Beluch, W.H., Genewein, T., Nurnberger, A., Kohler, J.M.: The power of ensem-
bles for active learning in image classification. In: CVPR, pp. 9368–9377 (2018).
https://doi.org/10.1109/CVPR.2018.00976

3. Buitrago, P.A., Nystrom, N.A.: Neocortex and bridges-2: a high performance
AI+HPC ecosystem for science, discovery, and societal good. In: Nesmachnow,
S., Castro, H., Tchernykh, A. (eds.) High Performance Computing, pp. 205–219.
Springer International Publishing, Cham (2021)

4. Clanuwat, T., Lamb, A., Kitamoto, A.: KuroNet: pre-modern Japanese Kuzushiji
character recognition with deep learning. In: ICDAR, pp. 607–614 (2019)

5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale
hierarchical image database. In: CVPR (2009)

6. Everingham, M., Van Gool, L., Williams, C.K.I., Winn, J., Zisserman, A.: The
PASCAL visual object classes (VOC) challenge. IJCV 88(2), 303–338 (2010)

7. Finn, C., Abbeel, P., Levine, S.: Model-agnostic meta-learning for fast adaptation
of deep networks. In: Precup, D., Teh, Y.W. (eds.) ICML, vol. 70, pp. 1126–1135
(2017)

8. Gal, Y., Islam, R., Ghahramani, Z.: Deep Bayesian active learning with image
data. ICML 70, 1183–1192 (2017)

9. Geifman, Y., El-Yaniv, R.: Deep active learning over the long tail (2017)
10. Griffin, G., Holub, A., Perona, P.: Caltech-256 object category dataset. CalTech

Report, March 2007
11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.

In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pp. 770–778 (2016). https://doi.org/10.1109/CVPR.2016.90

12. Kao, C.-C., Lee, T.-Y., Sen, P., Liu, M.-Y.: Localization-aware active learning for
object detection. In: Jawahar, C.V., Li, H., Mori, G., Schindler, K. (eds.) ACCV
2018. LNCS, vol. 11366, pp. 506–522. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20876-9 32

https://doi.org/10.1109/CVPR.2018.00976
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-030-20876-9_32
https://doi.org/10.1007/978-3-030-20876-9_32


18 P. A. Buitrago et al.

13. Krishna, R., et al.: The visual genome dataset v1.0 + v1.2 images. https://
visualgenome.org/

14. Krishnamurthy, A., Agarwal, A., Huang, T.K., Daume, H., III., Langford, J.:
Active learning for cost-sensitive classification. JMLR 20(65), 1–50 (2019)

15. Krizhevsky, A., Nair, V., Hinton, G.: CIFAR-100 (Canadian Institute for Advanced
Research)

16. Lin, T., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object
detection. In: ICCV, pp. 2999–3007 (2017)

17. Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., Dollár, P.,
Zitnick, C.L.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla,
T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1 48

18. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In:
ICCV (2015)

19. Liu, Z., Miao, Z., Zhan, X., Wang, J., Gong, B., Yu, S.X.: Large-scale long-tailed
recognition in an open world. In: CVPR (2019)

20. Nystrom, N.A., Levine, M.J., Roskies, R.Z., Scott, J.R.: Bridges: a uniquely flexible
HPC resource for new communities and data analytics. In: XSEDE 2015: Scientific
Advancements Enabled by Enhanced Cyberinfrastructure (2015). https://doi.org/
10.1145/2792745.2792775

21. Qu, Z., Du, J., Cao, Y., Guan, Q., Zhao, P.: Deep active learning for remote sensing
object detection (2020)

22. Roy, S., Unmesh, A., Namboodiri, V.: Deep active learning for object detection.
In: BMVC (2019)

23. Russell, B., Torralba, A., Murphy, K., Freeman, W.: LabelMe: a database and
web-based tool for image annotation. Int. J. Comput. Vis. 77, 157–173 (2008)

24. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face
recognition and clustering. CoRR abs/1503.03832 (2015)

25. Sener, O., Savarese, S.: Active learning for convolutional neural networks: a core-set
approach. In: ICLR (2018)

26. Sinha, S., Ebrahimi, S., Darrell, T.: Variational adversarial active learning. In:
ICCV, pp. 5971–5980 (2019). https://doi.org/10.1109/ICCV.2019.00607

27. Snell, J., Swersky, K., Zemel, R.: Prototypical networks for few-shot learning. NIPS
30, 4077–4087 (2017)

28. Taigman, Y., Yang, M., Ranzato, M., Wolf, L.: Deepface: closing the gap to human-
level performance in face verification. In: CVPR, pp. 1701–1708 (2014). https://
doi.org/10.1109/CVPR.2014.220

29. Toropov, E., Buitrago, P.A., Moura, J.M.F.: Shuffler: A large scale data manage-
ment tool for machine learning in computer vision. In: PEARC (2019)

30. Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., Hazle-
wood, V., Lathrop, S., Lifka, D., Peterson, G.D., Roskies, R., Scott, J., Wilkins-
Diehr, N.: XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16(05),
62–74 (2014). https://doi.org/10.1109/MCSE.2014.80

31. Villalonga, G., Lopez, A.M.: Co-training for on-board deep object detection (2020)
32. Vinyals, O., Blundell, C., Lillicrap, T., Kavukcuoglu, k., Wierstra, D.: Matching

networks for one shot learning. In: Lee, D., Sugiyama, M., Luxburg, U., Guyon, I.,
Garnett, R. (eds.) NIPS, vol. 29, pp. 3630–3638 (2016)

33. Wang, K., Zhang, D., Li, Y., Zhang, R., Lin, L.: Cost-effective active learning for
deep image classification. IEEE Trans. Circ. Syst. Video Technol. 27(12), 2591–
2600 (2017). https://doi.org/10.1109/TCSVT.2016.2589879

https://visualgenome.org/
https://visualgenome.org/
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1145/2792745.2792775
https://doi.org/10.1109/ICCV.2019.00607
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/CVPR.2014.220
https://doi.org/10.1109/MCSE.2014.80
https://doi.org/10.1109/TCSVT.2016.2589879


MiikeMineStamps 19

34. Wang, Y., Yao, Q., Kwok, J., Ni, L.: Few-shot learning: a survey. arXiv preprint
arXiv:1904.05046 (2019)

35. Xia, G., et al.: DOTA: a large-scale dataset for object detection in aerial images.
In: CVPR, pp. 3974–3983 (2018). https://doi.org/10.1109/CVPR.2018.00418

36. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from
large-scale video datasets. In: CVPR, pp. 3530–3538 (2017)

37. Yoo, D., Kweon, I.S.: Learning loss for active learning. In: CVPR, pp. 93–102
(2019). https://doi.org/10.1109/CVPR.2019.00018

38. Zhang, S., Benenson, R., Schiele, B.: CityPersons: a diverse dataset for pedestr-
ian detection. In: CVPR, pp. 4457–4465 (2017). https://doi.org/10.1109/CVPR.
2017.474

http://arxiv.org/abs/1904.05046
https://doi.org/10.1109/CVPR.2018.00418
https://doi.org/10.1109/CVPR.2019.00018
https://doi.org/10.1109/CVPR.2017.474
https://doi.org/10.1109/CVPR.2017.474



